Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Microbiol Spectr ; : e0138622, 2022 Oct 27.
Article in English | MEDLINE | ID: covidwho-2256572

ABSTRACT

Nonpharmaceutical interventions (NPIs) to contain the SARS-CoV-2 pandemic drastically reduced human-to-human interactions, decreasing the circulation of other respiratory viruses, as well. Consequently, influenza virus circulation, which is normally responsible for 3 to 5 million hospitalizations per year globally, was significantly reduced. With the downscaling of the NPI countermeasures, there is a concern for increased influenza disease, particularly in individuals suffering from postacute effects of SARS-CoV-2 infection. To investigate this, we performed a sequential influenza H1N1 infection 4 weeks after an initial SARS-CoV-2 infection in ferrets. Upon H1N1 infection, ferrets that were previously infected with SARS-CoV-2 showed an increased tendency to develop clinical signs, compared to the control H1N1-infected animals. A histopathological analysis indicated only a slight increase for type II pneumocyte hyperplasia and bronchitis. Thus, the effects of the sequential infection appeared minor. However, ferrets were infected with B.1.351-SARS-CoV-2, the beta variant of concern, which replicated poorly in our model. The histopathology of the respiratory organs was mostly resolved 4 weeks after the SARS-CoV-2 infection, with only reminiscent histopathological features in the upper respiratory tract. Nevertheless, SARS-CoV-2 specific cellular and humoral responses were observed, confirming an established infection. On account of a modest trend toward the enhancement of the influenza disease, even upon a mild SARS-CoV-2 infection, our findings suggest that a stronger SARS-CoV-2 infection and its consequent, long-term effects could have a greater impact on the outcome of disease after a sequential influenza infection. Hence, the influenza vaccination of individuals suffering from postacute SARS-CoV-2 infection effects may be considered an avertible measure for such a scenario. IMPORTANCE During the COVID-19 pandemic, the use of face masks, social distancing, and isolation were effective not only in decreasing the circulation of SARS-CoV-2 but also in reducing other respiratory viruses, such as influenza. With fewer restrictions currently in place, influenza is slowly returning. In the meantime, people who are still suffering from long-COVID could be more vulnerable to an influenza virus infection and could develop a more severe influenza disease. This study provides directions to the effect of a previous SARS-CoV-2 exposure on influenza disease severity in a ferret model. This model is highly valuable to test sequential infections under controlled settings for translation to humans. We could not induce clear long-term COVID-19 effects, as the SARS-CoV-2 infections in the ferrets were mild. However, we still observed a slight increase in influenza disease severity compared to ferrets that had not encountered SARS-CoV-2 before. Therefore, it may be advisable to include long-COVID patients as a risk group for influenza vaccination.

2.
Vaccine ; 40(15): 2251-2257, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1730146

ABSTRACT

BACKGROUND: With COVID-19 vaccine roll-out ongoing in many countries globally, monitoring of breakthrough infections is of great importance. Antibodies persist in the blood after a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Since COVID-19 vaccines induce immune response to the Spike protein of the virus, which is the main serosurveillance target to date, alternative targets should be explored to distinguish infection from vaccination. METHODS: Multiplex immunoassay data from 1,513 SARS-CoV-2 RT-qPCR-tested individuals (352 positive and 1,161 negative) without COVID-19 vaccination history were used to determine the accuracy of Nucleoprotein-specific immunoglobulin G (IgG) in detecting past SARS-CoV-2 infection. We also described Spike S1 and Nucleoprotein-specific IgG responses in 230 COVID-19 vaccinated individuals (Pfizer/BioNTech). RESULTS: The sensitivity of Nucleoprotein seropositivity was 85% (95% confidence interval: 80-90%) for mild COVID-19 in the first two months following symptom onset. Sensitivity was lower in asymptomatic individuals (67%, 50-81%). Participants who had experienced a SARS-CoV-2 infection up to 11 months preceding vaccination, as assessed by Spike S1 seropositivity or RT-qPCR, produced 2.7-fold higher median levels of IgG to Spike S1 ≥ 14 days after the first dose as compared to those unexposed to SARS-CoV-2 at ≥ 7 days after the second dose (p = 0.011). Nucleoprotein-specific IgG concentrations were not affected by vaccination in infection-naïve participants. CONCLUSIONS: Serological responses to Nucleoprotein may prove helpful in identifying SARS-CoV-2 infections after vaccination. Furthermore, it can help interpret IgG to Spike S1 after COVID-19 vaccination as particularly high responses shortly after vaccination could be explained by prior exposure history.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Viral , COVID-19/diagnosis , COVID-19/prevention & control , Humans , Nucleoproteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination
3.
Front Immunol ; 12: 750229, 2021.
Article in English | MEDLINE | ID: covidwho-1506957

ABSTRACT

Improving COVID-19 intervention strategies partly relies on animal models to study SARS-CoV-2 disease and immunity. In our pursuit to establish a model for severe COVID-19, we inoculated young and adult male ferrets intranasally or intratracheally with SARS-CoV-2. Intranasal inoculation established an infection in all ferrets, with viral dissemination into the brain and gut. Upon intratracheal inoculation only adult ferrets became infected. However, neither inoculation route induced observable COVID-19 symptoms. Despite this, a persistent inflammation in the nasal turbinates was prominent in especially young ferrets and follicular hyperplasia in the bronchi developed 21 days post infection. These effects -if sustained- might resemble long-COVID. Respiratory and systemic cellular responses and antibody responses were induced only in animals with an established infection. We conclude that intranasally-infected ferrets resemble asymptomatic COVID-19 and possibly aspects of long-COVID. Combined with the increasing portfolio to measure adaptive immunity, ferrets are a relevant model for SARS-CoV-2 vaccine research.


Subject(s)
Bronchi/pathology , COVID-19/complications , COVID-19/immunology , Ferrets/immunology , SARS-CoV-2/physiology , Administration, Intranasal , Age Factors , Animals , Asymptomatic Diseases , Disease Models, Animal , Ferrets/virology , Humans , Hyperplasia , Immunity, Cellular , Immunity, Humoral , Injection, Intratympanic , Male , Virus Internalization , Post-Acute COVID-19 Syndrome
4.
J Clin Virol Plus ; 1(4): 100042, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1433482

ABSTRACT

Background: SARS-CoV-2 is taking a huge toll on society while influenza and RSV detection are also becoming more important. These viruses pose a high burden on health care. Rapid and accurate diagnostics for these pathogens are important for swift triage in the hospital. Fast molecular point of care test (mPOCT) assays for these pathogens can prove an alternative. Here a multi-center evaluation of the Xpert® Xpress SARS-CoV-2/Flu/RSV assay is reported. Study design: The Xpert® Xpress SARS-CoV-2/Flu/RSV assay was compared to three reference assays at three Dutch medical microbiology laboratories. An external quality assessment panel consisting of 16 specimens containing SARS-CoV-2, influenza viruses, RSV or human seasonal coronaviruses, or a combination thereof were used. Clinical specimens containing SARS-CoV-2 (n = 57), influenza viruses (n = 21) or RSV (n = 12), at a wide range of relevant concentrations were used. One laboratory also tested zoonotic avian and swine influenza viruses, and eight relevant SARS-CoV-2 variants. Results: The Xpert® Xpress SARS-CoV-2/Flu/RSV assay showed equal performance compared to the reference assays. All SARS-CoV-2 variants of interest and variants of concern were accurately detected. Human seasonal coronaviruses were not detected. All four circulating seasonal influenza virus subtypes/lineages and both RSV types were accurately detected as well as a set of recent zoonotic avian and swine influenza viruses. The clinical specimens showed 98.2% concordance using this assay. Conclusion: The Xpert® Xpress SARS-CoV-2/Flu/RSV assay is a good alternative for accurate detection for SARS-CoV-2, influenza type A virus, influenza type B virus and RSV types A and B detection in a short timeframe.

5.
Euro Surveill ; 25(3)2020 01.
Article in English | MEDLINE | ID: covidwho-1004613

ABSTRACT

BACKGROUND: The ongoing outbreak of the recently emerged novel coronavirus (2019-nCoV) poses a challenge for public health laboratories as virus isolates are unavailable while there is growing evidence that the outbreak is more widespread than initially thought, and international spread through travellers does already occur. AIM: We aimed to develop and deploy robust diagnostic methodology for use in public health laboratory settings without having virus material available. METHODS: Here we present a validated diagnostic workflow for 2019-nCoV, its design relying on close genetic relatedness of 2019-nCoV with SARS coronavirus, making use of synthetic nucleic acid technology. RESULTS: The workflow reliably detects 2019-nCoV, and further discriminates 2019-nCoV from SARS-CoV. Through coordination between academic and public laboratories, we confirmed assay exclusivity based on 297 original clinical specimens containing a full spectrum of human respiratory viruses. Control material is made available through European Virus Archive - Global (EVAg), a European Union infrastructure project. CONCLUSION: The present study demonstrates the enormous response capacity achieved through coordination of academic and public laboratories in national and European research networks.


Subject(s)
Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Coronavirus/classification , Coronavirus/genetics , COVID-19 Testing , COVID-19 Vaccines , Clinical Laboratory Techniques/methods , Coronavirus/isolation & purification , Disease Outbreaks , Humans , RNA, Viral/analysis , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity
6.
J Clin Virol ; 2020.
Article | WHO COVID | ID: covidwho-285004

ABSTRACT

BACKGROUND: With the outbreak of SARS-CoV-2, rapid diagnostics are paramount to contain the current pandemic. The routinely used realtime RT-PCR is sensitive, specific and able to process large batches of samples. However, turnaround time is long and in cases where fast obtained results are critical, molecular point of care tests (POCT) can be an alternative. Here we report on a multicenter evaluation of the Cepheid Xpert Xpress SARS-CoV-2 point-of-care test. STUDY DESIGN: The Xpert Xpress SARS-CoV-2 assay was evaluated against the routine in-house real-time RT-PCR assays in three medical microbiology laboratories in The Netherlands. A sensitivity and specificity panel was tested consisting of a dilution series of SARS-CoV-2 and ten samples containing SARS-CoV-2 and a range of other seasonal respiratory viruses. Additionally, 58 samples of patients positive for SARS-CoV-2 with different viral loads and 30 tested negative samples in all three Dutch laboratories using an in-house RT-PCR, were evaluated using Cepheids Xpert Xpress SARS-CoV-2 cartridges. RESULTS: Xpert Xpress SARS-CoV-2 point of care test showed equal performance compared to routine in-house testing with a limit of detection (LOD) of 8.26 copies/mL. Other seasonal respiratory viruses were not detected. In clinical samples Xpert Xpress SARS-CoV-2 reaches an agreement of 100 % compared to all in-house RT-PCRs CONCLUSION: Cepheids GeneXpert Xpert Xpress SARS-CoV-2 is a valuable addition for laboratories in situations where rapid and accurate diagnostics are of the essence.

SELECTION OF CITATIONS
SEARCH DETAIL